If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+10x=1
We move all terms to the left:
11x^2+10x-(1)=0
a = 11; b = 10; c = -1;
Δ = b2-4ac
Δ = 102-4·11·(-1)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-12}{2*11}=\frac{-22}{22} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+12}{2*11}=\frac{2}{22} =1/11 $
| -6/5v=12 | | -3n-3+2n+3=5n+8n | | 8=w12.8 | | 54=17x-3 | | 5/6=3y/7 | | (4x+25)+(2x+45)+(3x-15)=180 | | 4(g-3)+5=45 | | 4+4=-2(6x-4) | | 54=17x=3 | | -46+7p=-8(-7-3p) | | x+3=3+6x+x | | w/6-5=-8 | | -v+10=1+8v | | 4-5n-1=23 | | 5/6=y+3/7 | | 1+2r-7=4r+8 | | 8=x+5+1 | | 2(n+4)-4=36 | | 4x+6x-8=152 | | −4(4x−4)+2x−4=−30 | | 42=-7(z-3)42=−7(z−3)42 | | 2u+8=46 | | 2(n+1=-20 | | X^2-5x;x=-11 | | 2(n+1)=-20 | | 3(n+2)=39 | | 7x+40=9x+8 | | -14+10x=36 | | -6-2s=9+s | | -19+3n=1+5n | | 14+5/7x-20=4(1/7x-1 | | 2v+3=32 |